”~

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

A276 316
\\||\|\\\l\\\\l\\\ll\ll\\llNl\\\l\““\ll'

~_DTIC

ELECTE g
MAR 071994 R

OWNe4-07378 THESIS
IS

AIR FORCE SPACE COMMAND SATELLITE ORBIT
PREDICTOR USING PARALLEL VIRTUAL MACHINES

by
Susan K. (Matusiak) /ﬁrewer
December 1993

Thesis Advisors: Beny Neta
Don Danielson

Approved for public release; distribution is unlimited

DTIC QUALITY INNSPECTED 3

84 3 4 ¢3¢

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0788

PUDIC FRDOTTING Do tBEA *0F thig COICTION OF INTOIMBLION N ELUIMBTEd 10 Averaqge | AOus DEr reL00Mme, iNclud) the UME 107 FEvISWING INEITUCTIONS,

Gathenng and Mma g Ihe Aats Needed, M COMDIPTING 30T Fevipwing tNe COHRCTION Of tor hn:q 3 g this Dutden ¢ u'm&n::'cxm :::n‘oo“vf::i
COlECLON Of NTOPMALION, INCIVENG WGOIILIONS 107 rADUCING I DAGEn. 10 WaLAGION HaAAUSTIers Services, Directorste Tof 1A1Ormetion Opersnions and Aeports, 1213 JeMeron
Davn bughway, Sute 1204, Arhing VA 222024301 and 10 the Otfice of Management and Bueger. PADErwork Aeduction Prosect (0704-0188). Waunngton, OC 20903,

1. AGENCY USE ONLY (Leave Dlank) 2. REPORT DATE 3. REPORY TYPE AND DATES COVERED
: DMaster's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AIR PORCE SPACE COMMAND SATELLITE ORBIT
PREDICTOR USING PARALLFL VIRTUAL MACHINES

6. AUTHOR(S)
BREWER (MATUSIAK), SUSAN K.
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUPBER
Naval Postgradeste School
Maosterey, CA 93943-S000
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the policy or
position of the Department of Defense or the United States Government

12a. OISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is enlimited

13. ABSTRALT (Maximum 200 words)

Parslicl computing s the wave of the future. As the neod for computationsl power Incrensss, sue
processer s 5o longer sulficient to achiove the speed necemary to selve teday’s complex problsms. The Alr Rerce
mc——uunma:oou)mmmuuﬂy;u-u-unu
AFSPACEOOM, SGP4 (Simpiified Ceperal Perturbation Mode Four), has boen the sperational moded since 1976,
This thesls contains 2 dutalied discussion of the mathematical theory of the SGP4 medel. Tte tracking of 2 satelite
requires extemsive calculations. The satellite can be tracked mete efficintly with paraliel precessing techaiques. The
principles developed sre applicable 10 3 Naval ship tracking mulitple inceming threats; the increase in the speed of
mgmmwu-mmwmduhmunm
mmmMpﬂmwnmumn-ww
Machine (PVM) are developed. PVM b 5 small software package that sllews a netwerk of computer workutations
hwunﬂenwnﬂm.m““amdm
wnuw-m.m*uwm«md metheds of

I \ BEST

14. SUBJECT TERMS 15. NUMBER OF PAGES
e 104
Parafle Virtual Machine - Sateliite Orbit Predaction 0
16. PRICE CODE
17. SECURITY CLASSIFICATION |18 SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION |20, LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclamified Unclamified Unclassified

NSN 76§40-0°-280-5500 . Stangarg form 298 (Rev 2.89%

1 Proycrioed by ANYI S1g 2)9.°8

Approved for public release; distribution is unlimited.
Air Foroe Space Command Satellite Orbit Predictor
Using Parallel Virtual Machines
by

Susan Kay (Matusiak) Brewer
Lieutenant, United States Navy
BSMA, South Dakota 8School of Mines and Technology, 1987

Submitted in partial fulfillment
of the requirements for the degree of
MASTER OF SCIENCE IN APPLIED MATHEMATICS
from the

NAVAL POSTGRADUATE SCHOOL
December 1993

Author: Zé ﬁ /”7 z é)ﬁ v

Susan’ Kay (Matusiak) Brewer

Approved by: \b W‘

Beny Neta, Thesis Advisor

1).0,23@&&0\

Don Danielson, Thesis Advisor

Department of Mathematics

ABSTRACT

Parallel computing is the wave of the future. As the need for computational power
increases, one processor is no longer sufficient to achieve the speed necessary to solve
today's complex problems.

The Air Force Space Command (AFSPACECOM) tracks approximately 8000
satellites daily; the mode! used by the AFSPACECOM, SGP4 (Simplified General
Perturbation Model Four), has been the operational model since 1976. This thesis
contains a detailed discussion of the mathematical theory of the SGP4 model.

The tracking of a satellite requires extensive calculations. The satellite can be
tracked more efficiently with parallel processing techniques. The principles developed
are applicable to a Naval ship tracking mulitple incoming threats; the increase in the
speed of processing incoming data would result in personnel being informed faster and
thus allow more time for better decisions during combat.

Three parallel algorithms applied to SGP4 for implementation on a Parallel
Virtual Machine (PVM) are developed. PVM is a small software package that aliows a
network of computer workstations to appear as a single large distributed-memory parallel
computer. This thesis contains a description of several algorithms for the implementation
on PVM to track satellites, the optimal number of workstations, and methods of

Y Accesion For]
distributing data. | Accesion Fo é.____l
NTIS CRA&!

DI 1AB C!
Unannouintod 8!

Justitoation

SR IREIIRE A SRS PN e # L.

m Dt i

Avsitagnits ot
VoAaad oo
D'St :;p"',ldl

Ad| |

TABLE OF CONTENTS

LINTRODUCTIONccciiiiirinenencesennannnnses sonee

Il. PARALLEL VIRTUAL MACHINE cosessnsans teecsoncsenss 4
A. ADVANTAGES OF PUMiiiiiiiiiiiiiiiiiiiieiiiiienieieeeernnaneanes 5

B. HISTORY OF PVM ...ttt ittt iiiee e iriieeiieeernnenenens 7

C. COMPONENTS OF PUM ... ittt ee e e eees 9

D. APPLICATIONSot ittt it et reee s ceineeeena, 9

E. HETEROGENEOUS NETWORK COMPUTING ENVIRONMENT 12

F. OTHER SOFTWARE PACKAGESccciiiiiiiiiiiiiiiiiiiieeneeen 14
M. SGPANDSGP4ccccciiviietcnnicnnsnnnncnenes cesessas 17
A. SIMPLIFIED GENERAL PERTURBATION MODEL (SGP) 17

B. SIMPLIFIED GENERAL PERTURBATION MODEL FOUR (SGP4) 18

1 OVBIVIBW ... i i et 18

2. Input Parameters e eeee e rare e 20

3. ProgramSequence Flowcccoiiiiiiiiiiiiiiiiiiiiiiiiiii e, 22

Lo o L 7 22

1. Recover Original Mean Motion and Semimajor Axis 23

2. Update The Parameter for the SGP4 Density Function 23
3.CalculateConstantsccooiiiiiiiiiiiiiiii i 24

4. Secular Effects of Atmospheric Drag and Gravitation 26
S.Add Thelong Periodic Termsccovviviiiiiiennnererennienenes 28
6.Solve Kepler's Equationc.coviiiiiiiiiiiiiiiienieinnisecnniens 30

7. Short Periodic Preliminary Calculationscccovvviieiene 30

8. Update The Osculating Quantitiescccooiiiiiiiiiinnn 32

9. Calculate Unit OrientationVectorscovviiiiiiiiiiiiiiiiinan, 33

10. Calculate The Postion And Velocity Vectorsccvvvvnnnnn, 33

IV. PARALLELIZATION OF SGP4 USING PVM ceessssessecss 34
A OVERVIEW ...t i ettt cere e s reaee s eraaaans 34
B.INPUT DAT A ittt ittt taresnnareesersasesananen 37

C. ALGORITHMS ... i it iieeee s nane s ananes 41

3. Parallel AlIgorithmsccciiiiiiiiiiiiiiiiiiiiaiierenieneienaines 43

D. PROGRAMOVERVIEWciiiiiiiiiiiiiiiertnenrenerenreetnnscenacans 49
f.8equential ...t i rer ettt e e e e 49

P o -1 S 49

B RESULTS ..ottt ittt iiie it iene e reraenaranascsasacsnanaes 51

B T 2 =T i 1 51

2. Endtoend Timeciiiiiiii ittt ittt e 52

3. Percent Worker Communicationccoiiiiiiiiiiiiieiiieaenenes 56

Q. OPOOAUD ...ttt i e et a et reeaans 61

LI = T =T 65
V.CONCLUSIONSccciccevnnecncens cetseecsscensesansensese 70
Appendix A : Source Code ceresesnsseases tersesnnacs sas 73
ListofReferencesccciiiiiiiiiiirieiannsscesensannns 94
INITIAL DISTRIBUTIONLISTccciviieeennnnns teessesssaas 96

ACKNOWLEDGMENT

To my husband, Terry, and daughters, Amanda and Sarah, for their support and
love during the many hours required to accomplish this goal.

To my Father and Mother, Myron and Delores Matusiak, and my Grandmother,
Albertina Greenwood, for their love and prayers to God to give me strength and
knowledge. Iam also thankful that they taught me the value of hard work and instilled in
me a sense of confidence in my abilities.

To my thesis advisors, Beny Neta and Don Danielson, for their guidance and
professionalism.

To my friends, Licutenants Sara Ostrom and Traci Ford, for giving me
outstanding answers to many technical questions.

Finally, to Al Geist and Vaidy Sunderam, the creators of PVM, for their
cooperation in providing me with technical reports and advice necessary to complete this

research.

I. INTRODUCTION

The goal of this thesis is to illustrate how a network of IPX Sunstations can be used as a
parallel computer to solve a complex military requirement of tracking 8000 earth satellites daily.
Paralle] processing has already been used in Global Climate Modeling, Superconductivity,
Seismic Imaging, and many other important applications in science today. Additionally, there are
other important military applications where the use of paralicl computing would be extremely
advantageous. For example, today's Weapon Control Systems like AEGIS has enormous
computational requirements to detect and destroy incoming threats. The use of separate
computers located at individual enclaves versus a centrally located computer will reduce the
vulnerability of a ship should it take a direct hit in the computer station. The necessary
computing power will be continued by choosing unaffected stations; additionally, the increase in
speed of processing incoming data would result in faster informed personnel and thus allow
more time for better decisions during combat.

Parallel computing is the wave of the future. As the need for computational power
increases daily, due to an increase in technological developments, one processor is no longer
sufficient to achieve the speed in computations necessary 1o solve today's problems.

Two ways one can achieve greater computational efficiency with parallel processing are

1. Purchase a computer developed solely for parallel processing applications
or
2. Usec existing workstations found in most companies today.
The first option requires the purchase of a computer like the INTEL iPSC/2 Hypercube

multicomputer.

The INTEL iPSC/2 Hypercube at Naval Postgraduate school was purchased in 1987 for about
$100,000.00; the Hypercube requires an additional $6000.00 per year to maintain, it is used
solely for research projects.

The second option, the use of existing workstations, requires only that one be willing to
utilize the power of idle workstation's CPU to achieve computational efficiency by dividing a
complex problem into smaller more manageable data components.

The average computer user in the workplace today does not require 100 % of the CPU's
power each hour of the day; additionally, at night the workstations remain idle until one logs in
the next morning or after the weekend.

The utilization of thousands of existing processors to solve problems with enormous
computational requirements will be common ﬁcﬁu in the future. The price/performance
advantage of this practice has not yet been fully realized; however, tomorrow’s scientist will
wonder how we achieved the advances in science and technology today with the use of serial
processing alone.

Once one realizes that there is a storechouse of computer power ready to be distributed
freely, the next step is to learn how to utilize this power. This thesis will illustrate how a network
of workstations can be used to increase the speed at which satellites are tracked. This work will
become increasingly more important as the number of objects tracked daily steadily increases
and the number of calculations required skyrockets.

This is a continuation of the Parallel Processing Orbital Prediction work conducted at
Naval Postgraduate School in the Mathematics Department orchestrated by Professors D.A.

Daniclson and B. Neta. In June 1992, Warren E. Phipps, Jr. developed several paraliel

algorithms for the Naval Space Surveillance Center's analytic satellite motion model. The model
is implemented in the FORTRAN subroutine PPT2. The algorithms were implemented on the
INTEL iPSC/2 Hypercube (Phipps, 1992). In March 1993, Sara Ostrom studied the paraliel
computing potential of the Air Force Space Command analytic satellite motion model
implemented on the INTEL iPSC/2 Hypercube (Ostrom, 1993). Currently, Leon Stonc is
implementing paraliel algorithms for the Navy's Satellite model using Parallel Virtual Machines.
This body of work is the result of the implementation of the Air Force Space Command's
analytic satellitc model, SGP4, using Parallel Virtual Machines.

Chapter II discusses the advantage of the Parallel Virtual Machine (PVM) in terms of
cost, availability and fault tolerance factors. be history and components of PVM are discussed
followed by a brief overview of a new extension to PVM called HeNCE. The chapter concludes
with a short discussion of other parallel software packages available like Express, P4, and Linda.
Chapter I describes the Air Force Space Command's analytical models SGP and SGP4 and
describes, in detail, the theory behind the prediction of a satellite's position and velocity.
Chapter IV describes three algorithms developed to study the parallelization of the satellite
computer code; additionally, a comparison of the each algorithm's performance is analyzed in

detail. The l.st chapter, Chapter V, contains conclusions .nd suggestions for further research.

II. PARALLEL VIRTUAL MACHINE

In this chapter, the advantages of using a Parallel Virtual Machine (PVM) in
terms of cost, availability, and fault tolerance factors will be discussed. The history and
components of PVM will be covered followed by a brief overview of a new exteasion to
PVM called the Heterogeneous Network Computing Environment (HeNCE). Finally,
other softwarc packages like Express, P4, and Linda will be briefly described. Thisis a
synthesis of papers written about the Parallel Virtual Machine (see Dongarra, Geist,
Mancheck, and Sunderman ,1993).

Parallel Virtual Machine is a small sc Iware package (~ Mbyte of C source code)
that allows a heterogeneous network of Unix-based computers to appear as a single large
distributed-memory paralic] computer. The PVM package is good for large-grain
parallelism; that is, at lcast 100K bytes/node. The term virtual machine is used to
designate a logical distributed-memory computer and host is used to designate onc of the
member computers.

The PVM software supplies the functions to automatically start up tasks on the
virtual machine and allows the tasks to communicate and synchronize with each other.
Note, a task is a unit of computation in PVM and is analogous to a UNIX process.

A problem can be solved in paralic] by sending and receiving messages to
accomplish multiple tasks. Thesc message-passing constructs arc common to most

distributed-memory computers. By sending and receiving messages, multiple tasks of an

application can cooperate to solve a problem in parallel. The applications can be written
in Fortran 77 or C.

PVM handles all message conversion that may be required if two computers use
different data representations. PVM also includes many control and debugging features in
its user-friendly interface. For instance, PVM ensures that error messages generated on a
remote computer are displayed on the user's local screen.

PVM allows these application tasks to choose the architecture best suited to the
solution. PVM also supports heterogeneity at the machine and network levels.

At the machine level, computers with different data formats are supported as well as
different serial, vector, and parallel architectures. At the network level, different network
types can make up a Parallel Virtual Machine, for example, Ethernet, Fiber Distributed
Data Interface (FDDI), token ring, etc.

Users of PVM can also configure their own paraliel virtual machine, which can
overlap with other users’ virtual machines. Configuring a personal parallel virtual
machine involves simply listing the names of the machines in a file that is read when
PVM is started.

A. ADVANTAGES OF PYM

The first advantage of using PVM is a reduction in cost, it is and will continue to
be costly to allocate large computing resources to each and every user. The beauty of
using workstations for parallel processing is that a user of a workstation may not use the

machine all the time, but may need more than what a single workstation can provide

when applications are to be run. Many scientists are discovering that their computational
requirements are best served not by a single, monolithic machine but by a variety of
distributed computing resources, linked by high-speed networks.

The second advantage in network-based concurrent computing is the ready
availability of development and debugging tools. Typically, systems that operate on
loosely coupled networks permit the direct use of editors, compilers, and debuggers that
are available on individual machines; also, users arc already familiar with the use and
individual idiosyncrasies of each tool so that learning new skills is not necessary.

The third advantage is the potential fault tolerance of the network(s) and the
processing clements. Most multiprocessors do not support such a facility; hardware or
software failures in one of the processing elements often lead to a complete crash.
Additionally, it is the opinion of the author, that for Naval applications using different
workstations in different arcas of a Naval ship can reduce vulnerability should the ship
take a direct hit in a critical arca. The computing power needed for a combat system like
Acgis could be continued by choosing unaffected stations.

A study conducted by Eichelberger and Provencher (1993) explored using PVM
to model a survivable AEGIS combat system for a CG47 Ticonderoga class AEGIS
cruiser model. Present naval combat systems possess only manual reconfiguration and
static rudimentary automatic reconfiguration schemes. The study concluded that there is
a significant improvement in mission readiness when using a reconfigurable computer
architecture.

B. HISTORY OF PYM

In the summer of 1989, at Oak Ridge National Laboratory (ORNL), the
development of PVM software began and is now distributed freely in the interest of the
advancement of science around the world. The driving force behind the initial
popularity of PVM was the ability to get an excellent price performance ratio- better than
any other computer system in the world. In general, a cluster of about 10 high
performance workstations is potentially capable of solving a problem as fast as a
supercomputer costing 20 times more; thus, PVM is rapidly becoming a de facto standard
for distributed computing. How did all this begin? The following is a brief history of

PVM's creation and it's creators:

Summer 1989: Vaidy Sunderam designed and implemented the first version of
Parallel Virtual Machine while visiting Oak Ridge National
Laboratory.

Summer 1990: Vaidy Sunderam and Al Geist refined the PVM software to
develop a Fortran interface and several parallel applications;
additionally, a graphical interface called XPVM was developed.

November 1990: Al Geist developed a PVM version of large material science
application code run on a network of IBM RS/6000's which won
the 1990 Gordon Bell Prize for best price/performance ratio of any

application in the world.

December 1990:

March 1991:

Summer 1991:

December 1991:

February 1992:

Summer 1992:

February 1993 :
April 1993:

August 1993:

Sunderam and Geist entered their PVM research into the 1990
IBM Supercomputer competition and won first prize.

PVM 2.0 was developed by Bob Mancheck from PVM 1.0 - the
carlier research version. PVM 2.0 was made publicly available
through netlib@oml.gov.

Sunderam, Geist, and Manchek began working on the design
features of PVM 3.0 such as dynamic configuration and new
routine names. Additionally, a digest for users to exchange
information was set up at pvmlist@mathcs.emory.edu.

Beguelin began the development of a new software package called
Xab, a monitor and debugger for PVM programs. This version can
be obtained by contacting adam@cs.cmu.edu.

PVM 2.4 was released and HeNCE was made available through
netlib@oml.gov.

Geist and his student developed a package built on top of PVM 2.4
that dynamically load balances a users application.

PVM 3.0 released.

PVM 3.1 released.

PVM 3.2 is released.To receive this software send email to
netlib@oml.gov with the message: send index from pvm3

or ftp from netlib2@cs.utk.edu directory pvm3.

C. COMPONENTS OF PYM

The PVM system is actually composed of two parts , the daemon and a library of
PVM interface routines.

The dacmon is called pvmd3 (sometimes abbreviated pvmd) and resides on all the
computers making up the virtual machine. Any user with a valid login can install this
daemon on a machine. When the user desires to run a PVM application, he/she executes
pvmd3 on one of the computers which in turn starts up pvmd3 on each of the computers
making up the user-defined virtual machine. A PVM application can then be started
from a Unix prompt on any of these computers.

The library of PVM interface routines contains routines for passing messages,
spawning processes, coordinating tasks, and modifying the virtual machine. The user can
call any of these routines and application programs must be linked with this library to use
PVM.

D. APPLICATIONS

A variety of applications have been developed over the past few years using
PVM. Below is a partial list of some of these applications:

Material Science
Global Climate Modeling
Atmospheric, oceanic, and space studies
Meteorological forecasting
3-D ground water modeling

Superconductivity, molecular dynamics
Monte Carlo CFD application

L 2K JEE JEE JER JEE JEE 2

2-D and 3-D scismic imaging

3-D underground flow ficlds
Particle simulation

Distributed AVS flow visualization

. & &

As a result of this thesis , one can add Orbital Prediction to this list.

Application programs are composed of subtasks (or components) at a moderate
level of granularity. The programs view the PVM system as a general and flexible
paralle] computing resource which may be accessed at three different modes:

1. Transparent - subtasks are automatically located at the most
appropriate sites.

2. Architecture-dependent - subtasks specific for architecture execution are
chosen by the user.

3. Machine-specific - subtasks are located on a particular machine to

exploit particular strengths of individual machines.

During execution, multiple instances of each component or subtask may be

initiated. Figure 2.1 on the next page illustrates a simplified architectural overview

of the PVM system (see Geist and Sunderman , page 3, 1993) .

10

Application 1

Component Instances Application 2
S5oese] O3

PVM SYSTEM

LAN1l'sun Cube SMM | LAN2 Sun X wrielly

Cray

\. J
Figure 2.1 Simplified Architectural Overview of PVM

Application programs under PVM may possess arbitrary control and dependency
structures; that is, at any point in the execution of a concurrent application, the processes
in existence may have arbitrary relationships between each other and any process may
communicate and/or synchronize with any other. Any specific control and dependency
structure may be implemented under the PVM system by appropriate use of PVM
constructs and host language control flow statements.

Multiprocessing on loosely coupled networks provides facilities that are normally
not available on tightly coupled multiprocessors. For example, debugging support, fault
tolerance, and profiling and monitoring to find hot-spots or load imbalances within an

application.

11

The disadvantages associated with networked concurrent computing are
generating and maintaining multiple object modules for different architectures,
considerations of security into personal workstations, and other administrative functions.
PVM supports two auxiliary components that provide some features to overcome these
disadvantages. First, the HONCE interface is a graphical based parallel programming
paradigm. Second, PVM is undergoing extensions to make PVM work on MPP
machines which it now does on several made by Intel, TMC, Cray, and Convex with
KSR and Sequent underway (Geist, 1993).

E. HETEROGENEOUS NETWORK COMPUTING ENVIRONMENT (HeNCE)

HeNCE simplifies the writing of paralle] programs and was developed with two
goals in mind :

1. Make network computing accessible without the need for extensive training in
parallel computing
and
2. Make the resources best suited for a particular phase of the computation available
to the users.

In HeNCE the programmer explicitly specifies parallelism of a computation by
drawing graphs. The nodes in a graph represent user defined subroutines (written in
cither FORTRAN or C) and the edges indicate parallelism and control flow. HeNCE will
automatically execute the subroutines in parallel (whenever possible) across a network of

heterogeneous machines. HeNCE relies on the PVM system for process initialization

12

and communication. If onc wishes to write explicit message passing parallel programs
on a network of machines they should use the PVM system directly.

Once the graph is complete, HeNCE will automatically write the paralle]l program
including all the communication and synchronization routines using PVM calls. HENCE
tools exist to assist the user in compiling this program for a heterogeneous environment.

HeNCE is composed of five integrated graphical tools. Below is a brief
explanation of each tool:

1. Compose - use to specify the parallelism of an application by drawing a

graph illustrating dependencies between procedures

2. Configure - useto specify a network of heterogeneous computers to be
used as the PVM and defines a cost matrix between machines
and procedures

3. Build - use to compile and install the procedures written by the
compose tool

4. Execute - use todynamically map procedures to machines for execution
of the application and collect tracing information

5. Trace - use to read the trace information and display an animation of

the execution, cither in real time for debugging or later for

performance analysis.

13

An initial version of HeNCE is available through the net/ib. To obtain HENCE
scad email to netlib@oml.gov and next to subject one should type: sead index from
hence; any problems with HeNCE can be addressed to: hence@msr.epm.ornl.gov.

F. OTHER SOFTWARE PACKAGES

Various other software packages have been developed that enable scientists to
write heterogeneous programs; these, as well as PVM, have evolved over the last several
years, but none of them can be considered fully mature. It is an exciting time in
paralic]l computing and there are many grand challenges for scientists to explore.

I would like to briefly discuss some of the other software packages, in order that
the reader will be familiar with their names and features (see Dongarra, 1993).
Examples of such other software packages include Express, P4, and Linda, however, it
is important to note that these packages are by no means the only ones in existence. Each
package is layered over the native operating systems, exploits distributed concurrent
processing, and is flexible and general-purpose; all exhibit comparable performance.
Their differences lie in their programming model, their implementation schemes, and
their efficiency.

Express toolkit is a collection of tools that individually address various aspects of
concurrent computation. The toolkit is developed and marketed commercially by
ParaSoft Corporation, a company started by some members of the Caltech concurrent
computation project. Express is based on beginning with a sequential version of an
application and following a recommended development life cycle culminating in a

14

parallc] version that is tuned for optimality. The core of thc Express system is a set of
libraries for communication, IO, and paraliel graphics.

P4 is a library of macros and subroutines developed at Argonne National
Laboratory for programming a variety of parallcl machines. P4 supports both the
shared-memory model and the distributed-memory model. In the process management
mechanism in P4 there is a "master” process and "slave” processes, and multilevel
hicrarchies may be formed to implement what is termed a cluster model of computation.
Shared Memory support via monitors is a distinguishing feature of P4; however, this
feature is not distributed shared memory, but is a portable mechanism for shared address
space programming in true shared memory multiprocessors. A set of macro extensions
was developed at GMD (Gesellschaft fiir Mathematik und Datenverarbeitung in Schloss
Birlinghoven, Gemany) called Parmacs. Parmacs provided Fortran interfaces and a
variety of high-level abstractions dealing with global operations to the P4 system.

Linda is a concurrent programming mode] that has evolved from a Yale
University research project. The primary concept in Linda is that of a “tuple-space”, an
abstraction via which cooperating processes communicate. The tuple~space concept is
essentially an abstraction of distributed shared memory, with one important difference
(tuple-spaces are associative), and several minor distinctions (destructive and
non-destructive reads, and different coherency semantics are possible). Applications use
the Linda model by embedding constructs that manipulate the tuple space. Recently, a

new system technigue has been proposed, at least nominally related to the Linda project.

15

This scheme, termed "Pirhana” proposcs a proactive approach to concurrent computing
where resources seize tasks from a well known location based on availability and

suitability.

16

III. SGP AND SGP4

A. SIMPLIFIED GENERAL PERTURBATION MODEL(SGP)

The original model used by the Air Force Space Command to track satellites was
the Simplificd General Perturbation mode! (SGP). The model was simplified by the
exclusion of perturbation effects caused by higher order terms in the Legendre expansion
of the Earth's gravitational potential or other celestial bodies like the moon or the sun.
The model also assumed the drag effect on mean motion as linear in time; this
assumption dictated a quadratic variation of mean anomaly with time. The drag effect on
eccentricity was modeled such that the perigee height remained constant (Hoots and
Rochrich (1980), page 2).

These simplifications allowed an analytic solution to the equations of motion.
Although the solutions are not as accurate as numerical techniques, they are
computationally less expensive. Semi-analytic models increase the accuracy while
decreasing the computational cost. See Dyar (1993) for comparison of various models in
terms of accuracy and computer time required on a Sun Sparc 10.

Hilton and Kuhlman (1966) developed the analytical SGP model. SGP's
gravitational submodel is a simplification of the work done by Kozai (1959) and Brouwer
(1959). For a more detailed discussion of the SGP model sec Hoots and Rochrich (1980)

and Sara Ostrom (1993), pp. 10-20.

17

B. SIMPLIFIED GENERAL PERTURBATION MODEL FOUR (SGP4)

1. Overview

The second model, SGP4, was obtained by a simplification of a more extensive
analytical theory developed by Lane and Cranford (1969) which uses the solution of
Brouwer (1959) for its gravitational model and a power density function for its
atmospheric model [Hoots and Rochrich (1980), p.2]. SGP4 bad replaced SGP as the
operational theory at the AFSPACECOM by 1976.

The SDP4 extension to SGP4 was developed to be valid for deep-space satellites.
The deep-space equations were developed by Hujsak (1979). SDP4 models the effects of
the moon and sun in addition to certain sectoral and tesseral Earth harmonics that
become important for half-day and one-day period orbits.

The SGP4 and it's extension, SDP4, are both analytical models. They identify
variations in terms of changes in the osculating elements with respect to time. The
models are more accurate than the original SGP model due to two factors:

1. The inclusion of zonal harmonics through J, ; whereas, the SGP model
only included zonal harmonics through J,.

2. The inclusion of a drag force in the equations of motion versus the linear
simplification of the SGP model.

18

The main program, DRIVER reads the input and calls cither SGP4 or SDP4. If
the satellite is "near-carth” (e.g., orbital period less than 225 minutes) then SGP4 is
called; otherwise, the satellite is classified "decp-space” and DRIVER calls SDP4.

SGP4 and SDP4 receive input from the DRIVER and perform calculations
necessary to return to the DRIVER the position and velocity vector in units of earth radii
and minutes. The DRIVER performs a unit conversion to kilometers and seconds for
printout.

SGP4 and SDP4 both call two functions, ACTAN and FMOD2P. ACTAN is
passed the values of sine and cosine and retumns the angle in radians in the range of

0 to 2n. FMOD2P is passed an angle in radians and returns the modulo by 2n of that
angle.

Additionally, SDP4 calls the subroutine DEEP. The first time DEEP is called
certain constants already calculated in SDP4 are passed through an entry called DPINT.
All initialized quantities nceded for deep-space prediction are calculated. At this time, it
is also determined whether the orbit is sychronous or if the orbit experiences resonance
effects. During initialization, the subroutine DEEP calls the function THETAG. The
function THETAG obtains the location of Greenwich at epoch and converts epoch to
minutes since 1950.

The next time SDP4 calls DEEP occurs during the secular undate portion and is
via the entry DPSEC. The secular update portion of SDP4 is where additional secular

and long-period resonance effects are added to the values of the "mean” orbital elements.

19

The final access to DEEP occurs via DPPER where the appropriate decp-space

lunar and solar periodics are added to the orbital clements.

2. Input Parameters

The SGP4 model uses the six orbital elements, a drag factor, and an epoch

reference time to predict the satellite position and velocity vectors at a future time.

The six orbital clements are "mean" values obtained by removing periodic

variations in a particular way. The clements are given below along with the name

assigned to each in the SGP4 Fortran computer code:

[VARIABLE NAME SYMBOL IN THEORY COMPUTER CODE
PMean Motion at Epoch no XNO
{Ecceatricity e EO
lination of Orbital Planc fo XINCO
the Equator
ight Asceasion of the Q, XNODEO
i g Node
P\:gmcm of Perigee ©, OMEGAO
Anomoly at Epoch M, XMAO

Table 3-1 Classical Orbital Elements

The following diagram will be useful throughout this discussion in visualizing

the satellites orbit and the angles given in table 3-1 above:

20

[

Earth's North Pole 4 # Satellite
C Orbit Plane

Earth's

Node Line

Perigee

E = eccentric anomaly

VvV = true anomaly

E ~esinE =M =n(t -T)

_

Figure 3.1 Classical Orbital Elements

21

3. PROGRAM SEQUENCE FLOW
The ten main steps 10 solve for position and velocity vectors are as follows:
1) Recover original mean motion and semimajor axis from the input clements.

2) If necessary, update the parameter for the SGP4 density function.

3) Calculate constants using appropriate values of the density function from
step two above.

4) Account for the secular effects of atmospheric drag and gravitation.

5) Add the long periodic terms.

6) Solve Kepler's equation.

7) Calculate the preliminary quantitics needed for short periodics.

8) Update the osculating quantities using the short periodics.

9) Calculate the unit oricntation vectors.

10) Calculate the postion and velocity vectors.
The SDP4 model follows these same steps with the addition of several calls to the

subroutine DEEP which was discussed earlier.

C. EQUATIONS
This section will describe the equations developed by Hoots and Rochrich (1980),
pp. 14-37 . The ten main steps listed above will serve as the outline of the discussion.

A strict parallel structure exists between the computer code and the equations.

1. Recover Original Mean Motion and Semimajor Axis
The input variable for mean motion (n,) requires modification after which it is

denoted by n,". This modification to n, is accomplished as follows:

1) n'= : Ts relationship of n”/ to n,

where
3k,(3 cos?i, — 1)

80 =
e a1 - ety

2
b.k;:’]z—;""- J2= the second gravitational zonal harmonic of the earth
a2 = the equational radius of the earth squared

c.a.,:a,(l--!-S,—Sf—-

13483)
3

81

_ 3ky(cos?i, ~ 1)
2a}(1 - €2)*?

d s,

273
ca= (—:—5) where £, = ,/GM,G is Newton's universal gravitational
constant and M is the mass of the Earth.

Qo

2) To recover the semimajor axis use a/ = 148

where 8, is the same as above.

2. Update The Parameter for the SGP4 Density Function
Two parameters, s and g, , for the SGP4 density funcion may require

adjustments. The scale height parameter constant used by SGP4 is
23

s =1.01222928 carth radii (¢r); s changes depending on the height of the satellite at
perigee. For perigees between 98 kilometers and 156 kilometers s is replaced by s ,
where s* = a(1 - e,)-s+ag with units of earth radii and where perigee height is
calculated by perigee = [a?(1 - e,) — ag] ® Re (kilometers) and R is the spherical
carth radius.

For perigees below 98 kilometers, s is replaced by s¢ where

s =20

= — = . Kilometers/Earth radii
YEMPER +ag XKMPER = 6378.135 radii

It should be noted that if s is changed then a term (go—s)' is also replaced
by (go-s*)".

From this point on, the double-prime notation will be dropped for the mean

motion and the semimajor axis, as well as the * on 5. It will be understood

that these corrections have already been made when the symbols », , a,
and s are used.

3. Calculate Constants
a. The following constants are calculated for both SGP4 and SDP4:

6 =cosi,

g=a.,l—.s'

Bo=(1- ‘3)1,1
24

N=aoef

Ch =B..Cz B‘=dmgooefﬁcient

C2=(go =)8 (1 -n?) "2 [a,(1 + 30 + den + €'+

3kt (1.3
v) (—2 + 59’)(8 +24n? +3n"))

Ca = 210(go -)*E*aoBo(1 - n?) e
(2001 - e+ oo+ 1) - ;—zzlfj—%,-; «[31-30)1 + 3n? - 2e0n - dean®)
+2(1- 020’ - eon - eon’)c0s 20013
b. The following constants are calculated by SGP4 only for perigees above 220
kilometers:

(o — 5)*E*A3on.agsini,

C3 = kzeo

where As,o =-J 302

Cs = 2(go -)*E*a.B(1 - n?)""?[1+ Ln(n + e.) + e,n’]

D; = 4a,tC3

Ds= ga.,c’ma, +5)C}

Ds= %a,;’(ZZla, +315)C!

25

